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We present an improved method of generating vectors for Monte Carlo integration, 
which produces a significant improvement in rate of convergence over previous methods for 
problems in more than eight dimensions. 

1. INTRODUCTION 

Scientific calculations frequently require numerical integration of functions of 
many variables. Iterated Gaussian quadrature is very effective in spaces of less than 
about five dimensions. But for more than five, this method requires too many function 
evaluations to be practical. 

Some applications require the evaluation of integrals in 10 or even 20 dimensions. 
In such cases, Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods are more 
effective. In the MC method, an approximation to the integral is calculated from the 
values of the function at a sequence of “random” points. In the QMC method, a 
uniformly distributed sequence of points is used. 

2. DRAWBACKS OF THE MONTE CARLO METHOD 

Two problems are associated with the MC method. First, its asymptotic convergence 
rate is considerably slower than that of the QMC method. Second, the pseudo-random- 
number generators commonly used in the MC method have poor distribution proper- 
ties in spaces of many dimensions. 

Many integration problems can be reduced to integrating a function f over the 
k-dimensional unit hypercube: 

I = Jo1 dXl . . . I dXkf(X1 ,...) Xk). 

In the MC and QMC methods, a sequence a, ,..., aN of vectors in the unit hypercube 
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is generated and the integral is approximated by the average value of the function at 
those points: 

Iff‘is square-integrable, the Law of the Iterated Logarithm [l] gives the best possible 
asymptotic upper bound on the error of integration for a random sequence: 

I zjq - z I < K(log(log N)/N)l’Z, (1) 

where K is a constant which depends on the function f. So for the values of N en- 
countered in applications, the MC method gives an upper bound on the error which 
decreases essentially like l/N@. On the other hand, the QMC method uses a “quasi- 
random” sequence which is designed to be uniformly distributed in the hypercube. 
There are quasi-random sequences which give upper bounds on 1 IN - I / that 
decrease like (log N)“/N, and hence have much better asymptotic behavior than the 
MC method. 

In the MC method, the pseudo-random vectors are often generated by taking k 
successive integers bj from a linear congruential sequence of the form 

b,+l = (qbj + r) mod M. 

These k integers are then normalized by dividing by M to form the components of a, . 
Thus a, must fall on the lattice of points whose coordinates are multiples of l/M. 
Marsaglia [2, 31 has obtained two results which raise questions about the suitability 
of these pseudo-random sequences for numerical integration in more than one dimen- 
sion: 

(1) All vectors generated by this method will fall in fewer than (k!M)‘l” parallel 
hyperplanes, whereas the lattice of points whose coordinates are multiples of l/M 
cannot be spanned by fewer than M parallel hyperplanes. 

2. Any k + 1 points enclose a volume which is a multiple of l/(k!M) while 
k + 1 random points on the lattice should enclose volumes as small as l/(k!Mk). 

As an example, consider the linear congruential generator RANUN used by the 
Madison Academic Computing Center, for which q = 516, r = 1, and M = 2*. 
Vectors in 8-space generated by RANUN will fall in fewer than 79 parallel hyperplanes, 
as compared with the more than 3.4 x lOlo expected of a random sequence on the 
lattice. Thus the vectors generated by this method are far from randomly distributed. 
This difficulty is avoided in the QMC method, which aims for a uniformly distributed 
sequence rather than a random one. 

For a critique of Marsaglia’s results and a recent survey of quasi-Monte Carlo 
methods and pseudo-random numbers, see Ref. [9]. 
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3. DISCREPANCY AS A MEASURE OF NONUNIFORMITY 

The root-mean-square discrepancy [4] TN, which we shall simply call the “dis- 
crepancy,” has been found to be a useful measure of the nonuniformity of the distri- 
bution of a sequence a1 ,..., aN in the unit hypercube. The discrepancy is the root- 
mean-square value of the local discrepancy function g(x) defined by 

where ani is the ith component of a,, and 13 is the step function: e(t) = 0 for t < 0, 
e(t) = 1 for I 3 0. g is essentially the deviation of the cumulative distribution of the 
sequence a1 ,..., aN from the cumulative uniform distribution. 

The discrepancy is useful because it gives a strict upper bound on the error integra- 
tion [5]: 

I IN - Z I < 1 K(-*) TN(***), 
(.-.) 

where the sum is over the 2k - 1 nonempty subsequences (il ,..., ij) of (1, 2,..., k), 
K(i 1 ,..., i,) is a constant which depends on the function f, and T,(i, ,..., iJ is the 
discrepancy of the j-dimensional sequence consisting of the i,th,..., and i&h com- 
ponents of the sequence a, . This upper bound holds only for functions which are 
“of bounded variation in the sense of Hardy and Krause” [6’j (BVHK). It is a rather 
restricted class of functions, but it does include all functions f which satisfy both: 

(1) 1 a/& *-- (a/i&)f 1 is integrable. 
(2) The restriction off to each boundary hypersurface of the hypercube is also 

BVHK. 

4. THE HALTON SEQUENCE 

Wamock [7] has made a comparative study of various low-discrepancy sequences, 
calculating their discrepancies out to N = 1000. (One thousand points is too small 
for many numerical integration problems, but calculating discrepancies beyond 
N = 1000 is rather expensive.) Warnock found that the sequences with the lowest 
discrepancies in eight or fewer dimensions are the radical inverse sequences, the 
prototype of which is the Halton sequence. 

The uniformity of the distribution of the Halton sequence is based on the properties 
of prime numbers. If p is a prime, any integer n can be written in p-ary notation as 
follows: 

n = eipj + +-* + e,p + e, where OSei<p-1. 

So n can be represented by the integer string ej *** ele,, (base p). The radical inverse of 
n to the base p, R,(n), is then obtained by reflecting through the radical point: 

R,(n) = O.e,e, --- e, (base p) = e,/p + e,/pB + -** + ej/pjfl. (3) 
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This gives a very uniformly distributed sequence in the interval (0, 1) for each prime 
p. The Halton sequence in k dimensions consists of a distinct radical inverse sequence 
for each coordinate: 

a, = OM4, &W,..., k&N, 

where plc is the kth prime number. 
Halton [8] has found an upper bound on the discrepancy of his sequence: 

TN < Gdlog N)“IX (4) 

where C, is a constant that depends on the dimension. This bound, together with 
Eq. (2), gives a strict upper bound on the error of integration using the Halton 
sequence : 

1 I, - I [ < C(log N)“/N. 

This upper bound guarantees a much faster asymptotic convergence rate than that of 
the MC method, which is given by Eq. (1). 

5. SCRAMBLING THE HALTON SEQUENCE 

Halton’s upper bound on T guarantees that, asymptotically, his sequence will 
give a much lower integration error than a random sequence. However, numerical 
calculations show that in eight dimensions, the discrepancy of the Halton sequence 
does not fall permanently below the root-mean-square discrepancy of a random 
sequence until N = 700. The situation becomes progressively worse as k increases. 

16’ 
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FIG. 1. Discrepancies TN in k = 8 dimensions for Halton sequence and Scrambled Halton 
sequence out to N = 1000 points. The smooth curve is the root-mean-square discrepancy for a 
random sequence: <TN*> = ((l/2* - l/3k)/N)11e. 
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FIG. 2. Discrepancies in 12 dimensions. 
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FIG. 3. Discrepancies in 16 dimensions. 
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FIG. 4. Projection of the first 100 points of the Halton and Scrambled Halton 
the seventh and eighth coordinate plane. 
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IO00 POINTS 

HALTON SEQUENCE SCRAMBLED HALTON SEOUENCE 

FIG. 5. Projection of the first 1000 points. 

TABLE I 

Permutations for Scrambled Halton Sequence 

Prime Permutation@ of (0 1 2 *.. p - 1) 

2 

3 

5 

7 

11 

13 

17 

19 

23 

29 

31 

37 

41 

43 

47 

53 

(0 1) 
(0 2 1) 
(0 3 1 4 2) 

(0426153) 

(058210361974) 

(0 6 10 2 8 4 12 1 9 5 11 3 7) 

(0 8 13 3 11 5 16 1 10 7 14 4 12 2 15 6 9) 

(0 9 14 3 17 6 11 1 15 7 12 4 18 8 2 16 10 5 13) 

(0 11 17 4 20 7 13 2 22 9 15 5 18 1 14 10 21 6 16 3 19 8 12) 

(0 15 7 24 11 20 2 27 9 18 4 22 13 26 5 16 10 23 1 19 28 6 14 17 3 25 12 8 

21) 
(0 15 23 5 27 9 18 2 29 12 20 7 25 11 17 3 30 14 22 1 21 8 26 10 16 28 4 19 

6 24 13) 

(0 18 28 6 23 11 34 3 25 14 31 8 20 36 1 16 27 10 22 13 32 4 29 17 7 35 19 2 
26 12 30 9 24 15 33 5 21) 

(0 20 31 7 26 12 38 3 23 34 14 17 29 5 40 10 24 1 35 18 28 9 33 15 21 4 37 
13 30 8 39 22 2 27 16 32 11 25 6 36 19) 

(0 21 32 7 38 13 25 3 35 17 28 10 41 5 23 30 15 37 1 19 33 11 26 42 8 18 29 
4 39 14 22 34 6 24 12 40 2 31 20 27 9 36 16) 

(0 24 12 39 6 33 20 44 3 29 16 36 10 42 22 8 31 26 14 46 1 35 18 28 5 40 19 
37 11 25 43 4 30 15 34 9 45 21 2 32 17 41 13 27 7 38 23) 

(0 26 40 9 33 16 49 4 36 21 45 12 29 6 51 23 38 14 43 1 30 19 47 10 34 24 42 
3 27 52 15 18 39 7 46 31 11 35 20 48 2 28 41 8 22 50 13 32 17 44 5 37 25) 

a For each permutation, we can generate another permutation with the same minimal discrepancy 
by replachrg each nonzero integer n by p - n. For example, for p = 11, the other permutation is 
(0 6 3 9 1 8 5 10 24 7). 
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See Figs. 1, 2, and 3. The reason for this behavior is that the sequence R,(n) defined 
by Eq. (3) consists of cycles of length p of monotonically increasing numbers. For 
example, in eight dimensions, the last two coordinates are given by R,,,(n) and 
R,,(n), and consist of 17 and 19 increasing numbers, respectively. This produces a 
strong correlation between the seventh and eight coordinates of the sequence. Figures 
4 and 5 show the projection of the Halton sequence onto the seventh and eight 
dimensions for N = 100 and N = 1000. 

In an attempt to improve the behavior of the Halton sequence in many dimensions 
we looked for a way of scrambling the cycles of length p without sacrificing the low 
discrepancy. We have proven that Halton’s upper bound Eq. (4) continues to hold 
for the family of sequences described below. For each prime p, let rTp be a permutation 
on the digits (0, l,..., p - 1) which holds 0 fixed. W e e ne the scrambled radical d fi 
inverse sequence S,(n) in analogy with Eq. (3): 

if n has the expansion n = ei a** e,e,, (base p). Our Scrambled Halton sequence is 
then given by 

Note that the Halton sequence is just the special case in which each nP is chosen to be 
the identity permutation. 

We have not been able to find optimal choices for the permutations vg, 7r6 ,... . 
A choice that we have found to be very effective is the following: for each prime p, 
we picked a permutation rP which minimized the l-dimensional discrepancy after 
each of the first p - 1 steps of the sequence S,(n). That is, having picked am,..., 
and v,(j), we chose 7r,( j + 1) so as to minimize the discrepancy of the set (n,(l)/ 
p,..., r&)/p, r,(j + 1)/p. This procedure does not specify a unique permutation. For 
example, r,(l), for p odd, can be chosen to be either +(p - 1) or $(p + 1). We 
made our calculations with the permutations listed in Table I, but the calculations 
are insensitive to the choice of permutation. Figures 4 and 5 show how our permuta- 
tions break up the correlations between the seventh and eight coordinates of the 
Halton sequence. 

6. TFSTS AND COMPARISONS 

In Figs. l-3, we compare the discrepancy of our Scrambled Halton sequence with 
that of the original Halton sequence in 8, 12, and 16 dimensions. In 8 dimensions, 
the discrepancy of the scrambled sequence is 29 % lower than that of the Halton 
sequence at N = 1000 points. It is significantly lower than any of the sequences that 
were examined by Wamock. In 16 dimensions, our sequence has a discrepancy that 
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FIG. 6. Relative error (IN - Z)/Z in eight dimensions for Scrambled Halton sequence, Halton 
sequence, and RANUN out to N = 10 000 points. The integrand is a Gaussian peaked at the center 
of the hypercube: f(x) = de, exp(-Z(xi - 0.5)9. 
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FIG. 7. Relative error in 12 dimensions. 
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16 DIMENSIONS 
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FIG. 8. Relative error in 16 dimensions. 

is 80 y0 lower than Halton’s at N = 1000, and it always stays below the root-mean- 
square discrepancy of a random sequence. 

Test integrals are a very subjective way of comparing integration methods, but 
they can be useful for showing convergence trends. In Figs. 6-8, we compare the error 
of integration for the Scrambled Halton sequence, the Halton sequence, and the 
linear congruential generator RANUN described in Section 2, on a simple test 
integral in 8, 12, and 16 dimensions. The slow convergence of the MC method is 
obvious in every dimension. The improvement that results from scrambling the 
Halton sequence is evident in 16 dimensions, where the Halton sequence produces 
much larger fluctuations in the error of integration. 

7. CONCLUSION 

We have shown that considerable improvement in the convergence rate of the 
quasi-Monte Carlo method can be obtained by reordering the Halton sequence. 
Discrepancy calculations indicate that our sequence shows drastic improvement over 
the Halton sequence in spaces of high dimension, remaining below the expected 
discrepancy of a random sequence. This was accomplished without sacrificing Halton’s 
upper bound on the discrepancy, which guarantees a much faster asymptotic con- 
vergence rate than one can get with a Monte Carlo calculation. 
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